Мессбауэровская диагностика оксопроизводных железа системы Fe2O3–Na2O2

Варианты описания мессбауэровских спектров оксосоединений железа в пероксиде натрия с концентрацией 1.4*10-3 при различных температурах

Мессбауэровская диагностика оксопроизводных железа системы Fe2O3–Na2O2. Панкpатов Д.А. //Неорганические материалы, 2014. Т.50. №1. С. 90-98Search the full text below. Ищи полный текст ниже.

Методом мессбауэровской спектроскопии изучены различные составы оксопроизводных железа в пероксиде натрия. Рассмотрено несколько вариантов математического описания экспериментальных спектров. Полученные результаты не подтверждают ранее выдвинутые в литературе гипотезы об образовании в данных условиях соединений железа в степенях окисления выше +6. Показано, что в условиях большого избытка пероксида щелочного металла наиболее вероятно образование как минимум двух производных железа(V) в тетраэдрическом окружении. В мессбауэровских спектрах они характеризуются изомерными сдвигами -0.45 и -0.51 мм/с, и необычно большими квадрупольными расщеплениями – 1.32 и 1.94 мм/с (при комнатной температуре).

Подробнее...

Печать E-mail

Structural Features of Green Cobalt(III) Hydroxide

Deconvolution of emission Mossbauer spectra for green cobalt(III) hydroxide at 78 K and 298 K according to model 2
Structural Features of Green Cobalt(III) Hydroxide. D. A. Pankratov, A. A. Veligzhanin, Y. V. Zubavichus //Russian Journal of Inorganic Chemistry, 2013, Vol. 58, No. 1, pp. 67–73Search the full text below. Ищи полный текст ниже.

Emission Mössbauer and X-ray absorption XANES/EXAFS spectroscopic techniques are applied to elucidate the structural features of green cobalt(III) hydroxide. A comparative analysis of structurally characterized cobalt(II) and cobalt(III) oxo-compounds shows that the parameters of the local environment of cobalt atoms in green cobalt(III) hydroxide differ substantially from those of its analogues.

According to several reports of the late 50's of the twentieth century, the low-temperature reaction of cobalt(II) chloride with hydrogen peroxide in alcoholic media in the presence of sodium hydroxide affords dark green cobalt(II) peroxide. Although this synthesis protocol is broadly recited (in particular, it is described in all editions of the classical manual on inorganic synthesis by N.G. Klyuchnikov starting from 1965), the formation of such a simple cobalt(II) peroxide compound seems hardly possible. 

Подробнее...

Печать E-mail

EPR Spectroscopy Of Transformations Of Iridium(III) And Iridium(IV) Hydroxo Complexes In Alkaline Media

Schematics of transformation of iridium compounds in alkaline solutions (where the area of each block is proportional to the number of moles of a reagent involved in reaction)EPR spectroscopy of transformations of iridium(III) and iridium(IV) hydroxo complexes in alkaline media. Pankratov D.A., Komozin P.N., Kiselev Yu.M. //Russian Journal of Inorganic Chemistry. 2011. V.56. №11. P.1794-1799.Search the full text below. Ищи полный текст ниже.

Processes that occur in strong alkaline solutions of iridium(III) and iridium(IV) hydroxo complexes have been studied by EPR and electronic absorption spectroscopy. It has been demonstrated that dissolution of iridium compounds in alkaline solutions should be accompanied by a series of complicated transformations involving oxygen, which lead to the formation of several binuclear iridium(III, III), (III, IV), and (IV, IV) dioxygen complexes.

Most research into the chemistry of platinum metals has focused on their complexes. However, the chemistry of their hydroxo complexes is still one of the least studied fields. There are both objective (experimental complexity of operation in alkaline and strong alkaline media, tendency to polymerization of many hydroxo compounds, and others) and subjective reasons for this situation. In particular, it is believed that the chemistry of platinum metal hydroxo complexes is insufficiently diverse. Nevertheless, we previously showed the possibility of the existence of platinum(IV) hydroxo complexes as mono- and binuclear as mono- (superoxo-) and bi- (hydroxo- and superoxo-) bridging superoxo complexes of different composition forming under oxidative conditions in strong alkaline media.

Подробнее...

Печать E-mail

Электрохимические методы анализа. 1.1. Образование электродного потенциала

1.1. Образование электродного потенциала 

Образование электродного потенциалаПри погружении металлической пластины (электрода) в воду или раствор низкой концентрации соответствующего электролита поверхностные атомы электрода под действием полярных молекул воды могут покинуть поверхность металла и в форме гидратированных ионов перейти в раствор. При этом металл приобретает отрицательный заряд, а раствор обогащается положительно-заряженными ионами - катионами. Отрицательно заряженная поверхность металла, посредством кулоновского взаимодействия, притягивает часть гидратированных катионов электролита непосредственно к себе, образуя тем самым в поверхностном слое т.н. двойной электрический слой зарядов, подобный конденсатору с заряженными обкладками1.

Таким образом, внутренняя и внешняя обкладка двойного электрического слоя приобретают некоторый потенциал. Переход из объема металла в объем раствора, на границе раздела фаз будет сопровождаться скачком потенциала, а между точками в объеме металла и в объеме раствора электролита существует некоторая разность потенциалов2. Описанный процесс перехода ионов металла в раствор является обратимым, т.е. часть катионов из раствора под действием электростатических сил может вновь осаждаться (адсорбироваться) на поверхности металла, и может быть описан соответствующим окислительно-восстановительным уравнением: 

Подробнее...

Печать E-mail

Ещё статьи...

Рейтинг@Mail.ru

http://www.youtube.com/RuRedOx

Feedback | Контакт
E-mail:
Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.