Electron paramagnetic resonance spectra near the spin-glass transition in iron oxide nanoparticles

Low-temperature EPR spectra in iron-oxide nanoparticles. HL and HR are left and right spectrum peaks, correspondingly.

Electron paramagnetic resonance spectra near the spin-glass transition in iron oxide nanoparticles. Koksharov Yu.A., Gubin S.P., Kosobudsky I.D., Yurkov G.Yu., Pankratov D.A., Ponomarenko L.A., Mikheev M.G., Beltran M., Khodorkovsky Y., Tishin A.M. //Physical Review B: Condensed Matter and Materials Physics. 2001. V. 63. № 1. P. 124071-124074Search the full text below. Ищи полный текст ниже.

Electron paramagnetic resonance (EPR) in iron-oxide nanoparticles (∼ 2.5 nm) embedded in a polyethylene matrix reveals the sharp line broadening and the resonance field shift on sample cooling below TF ≈ 40 K. At the same temperature a distinct anomaly in the field-cooled magnetization is detected. The temperature dependences of EPR parameters below TF are definitely different than those found for various nanoparticles in the superparamagnetic regime. In contrast to canonical bulk spin glasses, a linear fall-off of the EPR linewidth is observed. Such behavior can be explained in terms of the random-field model of exchange anisotropy.


Печать E-mail

Электрохимические методы анализа. 2.1a. Протекание тока через электрохимическую ячейку


2.1. Протекание тока через электрохимическую ячейку (часть 1)

Схема электрохимической ячейки

Рассмотрим электрохимическую ячейку (рис.) в виде сосуда с раствором электролита (водный раствор соли металла), в которую погружены два электрода из одного и того же металла (соответствующего катионам электролита). Электроды подключены к внешнему источнику постоянного напряжения. В этом случае на поверхностях обоих электродов будут протекать соответствующие электрохимические реакции: на отрицательно заряженном электроде (катод) будет происходить восстановление (присоединение электронов) катионов электролита – 

Мn+·aq + ne- = М(пов),

а на положительно заряженном электроде (анод) – окисление (отдача электронов) атомов электрода – 

М(пов) = Мn+·aq + ne-.

При этом число электронов, отдаваемых на катоде, равно числу электронов, принимаемых на аноде. 

В общем случае, катодный процесс сопровождается переносом вещества из раствора электролита на поверхность электрода, а анодный процесс – переносом вещества с поверхности электрода в раствор электролита в виде соответствующих катионов, т.е. растворением анода. Количество же превратившегося вещества пропорционально количеству электричества (тока), проходящего через ячейку, в соответствии с законами Фарадея.


Печать E-mail

Potassium hexahydroperoxostannate: synthesis and structure

Mossbauer spectra of (1) K2Sn(OH)6 and (2) K2Sn(00H)6
Potassium hexahydroperoxostannate: synthesis and structure.
 Ippolitov E.G., Tripol'skaya T.A., Prikhodchenko P.V., Pankratov D.A.
//Russian Journal of Inorganic Chemistry. 2001. V.46. №6. P.851-857 Search the full text below. Ищи полный текст ниже.

Polycrystalline potassium hexahydroperoxostannate was prepared by replacement of hydroxo groups in potassium hexahydroxostannate upon its dissolution in hydrogen peroxide. A comparative study of the product and the starting hydroxostannate by powder X-ray diffraction analysis, thermogravimetry, and IR, 2H, 39K, and 119Sn NMR, and Mössbauer spectroscopy was carried out. The peroxo compound K2Sn(OOH)6 crystallizes in the hexagonal system with a = 7.264(7) Å, c = 10.168(4) Å. IR, NMR, and Mössbauer spectroscopy data show that the tin coordination polyhedron in the peroxo compound is an octahedron formed by the coordinated hydroperoxo groups.

Previously, sodium hexahydroperoxostannate was prepared and characterized by powder X-ray diffraction analysis, thermogravimetry, IR, 1H NMR, and Mossbauer spectroscopy, and by thermodynamic and kinetic method. The tin atom in this compound were found to occur in the octahedral environment of hydroperoxo group. It appeared pertinent to confirm the possibility of formation of this type of tin compound by preparing a new hydroperoxo complex. To this end, we performed the first synthesis of potassium hexahydroperoxostannate. Comparative study of potassium hexahydrosstannate (1) and hexahydroperoxosstannate (2) and their deuterated analogue (1a and 2a, respectively) was carried out by powder X-ray diffraction analysis, thermogravimetry, and IR, NMR (2H, 39K and 119Sn), and Mossbauer spectroscopy.


Печать E-mail

Synthesis and physicochemical properties of composites for electromagnetic shielding applications: a polymeric matrix impregnated with iron- or cobalt-containing nanoparticles

Mössbauer spectra of the iron-containing samples: sample 4; sample 4 after annealed in argon; and sample 4 after annealed in air

Synthesis and physicochemical properties of composites for electromagnetic shielding applications: a polymeric matrix impregnated with iron- or cobalt-containing nanoparticles G.Yu. Yurkov; A.S. Fionov; A.V. Kozinkin; Yu.A. Koksharov; Y.A. Ovtchenkov; D.A. Pankratov; O.V. Popkov; V.G. Vlasenko; Yu.A. Kozinkin; M.I. Biryukova; V.V. Kolesov; S.V. Kondrashov; N.A. Taratanov; V.M. Bouznik //Journal of Nanophotonics. 2012. V.6, Iss.1, 061717 (December 05, 2012)

Magnetic, magnetic resonance, and structural properties of iron and cobalt nanoparticles embedded in a polyethylene matrix were studied. The materials were prepared by thermal decomposition of cobalt or iron formate in a polyethylene melt in mineral oil and contained from 2 to 40% wt. of metal. Transmission electron microscopy data indicate that the average diameter of particles is up to 8.0 nm. According to extended x-ray absorption fine structure and Mössbauer spectroscopy studies, the particles comprise a metallic core and nonmetallic shell which is chemically bound to the surrounding matrix. Electrophysical and magnetic properties of the materials prepared were studied along with their reflection and attenuation factors in the super high frequency band. The materials were found to be suitable for use in electromagnetic shielding.

The possibility of combination of properties specific for metals and polymers in a single material, as well as control of these properties by means of concentration variations, has been studied for a while. Different polymers can be used as the matrix in such a material, e.g., polyethylene, polypropylene, polytetrafluoroethylene, and others. These polymers exert relatively high thermal resistance, unique rheological properties and high dielectric strength and they are chemically inert and easily processable, which allows one to form items of any desired shape and size from them. It is also important that these polymers are produced using well-studied methods.


Печать E-mail

Ещё статьи...



Feedback | Контакт
Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.