Electron Paramagnetic Resonance Of Ferrite Nanoparticles. Koksharov Yu.A., Pankratov D.A., Gubin S.P., Kosobudsky I.D., Beltran M., Khodorkovsky Y., Tishin A.M. //Journal of Applied Physics. 2001. V. 89. № 4. P. 2293-2298
Three types of iron-based oxide nanoparticles (weight compositions Fe2O3, BaFe2O4, and BaFe12O19) embedded in a polyethylene matrix are studied using the electron paramagnetic resonance technique. All nanoparticles are found to be multiphase. Thermal variations of electron paramagnetic resonance spectra reveal the presence of two phases in the Fe2O3 nanoparticles. One such phase undergoes an antiferromagnetic-like transition near 6 K. Nanoparticles of BaFe2O4 demonstrate a resonance anomaly near 125 K that could indicate the presence of a magnetic phase. Reduced magnetic anisotropy in BaFe12O19 nanoparticles may be related to either structural imperfection or particle smallness (effective diameter of less than 10 nm). Our data clearly show that low temperature experiments are desirable for the correct identification of nanoparticles by means of the elecstron paramagnetic resonance technique.
Подробнее...
Печать
E-mail