Investigation of iron(III) complex with crown-porphyrin
Investigation Of Iron(III) Complex With Crown-Porphyrin. Pankratov D.A., Dolzhenko V.D., Kiselev Y.M., Stukan R.A., Al Ansari Y.F., Savinkina E.V. //Hyperfine Interactions. 2013. V.222. Is.1 (Suppl). P. S1-S11
Iron complex of 5-(4-(((4′-hydroxy-benzo-15-crown-5)-5′-yl)diazo)phenyl)-10,15,20-triphenylporphyrin was investigated by 57Fe Mössbauer spectroscopy and EPR. Two Fe sites were identified; they give two differing signals, doublet and wide absorption in a large velocity interval. EPR spectra of solutions of the complex in chloroform at room temperature also show two signals with g = 2.064, AFe = 0.032 cm− 1; g = 2.015, AFe = 0.0034 cm− 1. The doublet asymmetry is studied vs. temperature and normal angle to the sample plane and gamma-beam. The isomer shift δ in the doublet varies from 0.41 to 0.25 mm/s in the 5÷360 K temperature range, whereas quadruple splitting value is constant, Δ ∼ 0.65 mm/s. The relax absorption may be described as a wide singlet (δ = 0.30 ÷ 0.44 mm/s and Γ = 2.83 ÷ 3.38 mm/s); its relative area strongly depends on temperature. According to δ, both signals are assigned to Fe(III).
Structures and properties of metal porhyrins (MPs) (hemoglobin, chlorophyll, vitamin B12, etc.) participating in vital processes depend on a central metal and peripheral substituents. Most MPs possess chemical and thermal stability, high extinctions coefficients in UV, visible and near IR ranges and reversible red-ox transitions. Therefore, detail study of their properties with the use of various physicochemical methods is of interest.