Constrained growth of anisotropic magnetic δ-FeOOH nanoparticles in the presence of humic substances. Polyakov A.Yu., Goldt A.E., Sorkina T.A., Perminova I.V., Pankratov D.A., Goodilin E.A., Tretyakov Y.D. //CrystEngComm. 2012. V.14. №23. P.8097-8102.
Natural polyelectrolytes, humic substances, are suggested to control in situ growth of feroxyhyte nanoparticles of a highly reduced mean size and with enhanced colloidal stability in salt solutions. The feroxyhyte is formed as 2-5 nm thick and 20 × 20 nm wide nanoflakes due to the blocking of developing facets of feroxyhyte and constraints caused by diffusion limitations of ionic constituents across partially charged branches of humic substances.
Superparamagnetic iron oxide nanoparticles (SPIONs) are known as effective biocompatible agents for various biomedical applications like drug delivery, in vivo magnetic resonance imaging, cell and protein separation, hyperthermia and transfection. At present, synthesis and application of rods, disks, fibers, tubes, sheets, ellipsoids, dumbbell-shaped, acorn-shaped and other anisotropic nanoparticles attract growing attention because of their unique properties. Aggregation is a serious problem in the preparation and storage of such magnetic nanoparticles limiting considerably their practical applications. This problem can be solved by a surface modification of nanoparticles with organic macromolecules, their preparation in the presence of surfactants, application of hydrophilic, surface-active ligands improving biocompatibility and resulting in multifunctional nanoparticles for medical diagnostics.
Подробнее...
Печать
E-mail
Potassium hexahydroperoxostannate: synthesis and structure. Ippolitov E.G., Tripol'skaya T.A., Prikhodchenko P.V., Pankratov D.A. //Russian Journal of Inorganic Chemistry. 2001. V.46. №6. P.851-857
Polycrystalline potassium hexahydroperoxostannate was prepared by replacement of hydroxo groups in potassium hexahydroxostannate upon its dissolution in hydrogen peroxide. A comparative study of the product and the starting hydroxostannate by powder X-ray diffraction analysis, thermogravimetry, and IR, 2H, 39K, and 119Sn NMR, and Mössbauer spectroscopy was carried out. The peroxo compound K2Sn(OOH)6 crystallizes in the hexagonal system with a = 7.264(7) Å, c = 10.168(4) Å. IR, NMR, and Mössbauer spectroscopy data show that the tin coordination polyhedron in the peroxo compound is an octahedron formed by the coordinated hydroperoxo groups.
Previously, sodium hexahydroperoxostannate was prepared and characterized by powder X-ray diffraction analysis, thermogravimetry, IR, 1H NMR, and Mossbauer spectroscopy, and by thermodynamic and kinetic method. The tin atom in this compound were found to occur in the octahedral environment of hydroperoxo group. It appeared pertinent to confirm the possibility of formation of this type of tin compound by preparing a new hydroperoxo complex. To this end, we performed the first synthesis of potassium hexahydroperoxostannate. Comparative study of potassium hexahydrosstannate (1) and hexahydroperoxosstannate (2) and their deuterated analogue (1a and 2a, respectively) was carried out by powder X-ray diffraction analysis, thermogravimetry, and IR, NMR (2H, 39K and 119Sn), and Mossbauer spectroscopy.
Подробнее...
Печать
E-mail