Электрохимические методы анализа. 2.1c. Протекание тока через электрохимическую ячейку

 

2.1. Протекание тока через электрохимическую ячейку (часть 3)

Вольтамперные кривые для неравновесных процессов

Рассмотрим, как изменится поляризационная кривая при электролизе водного раствора CuSO4 в ячейке с платиновыми электродами. Ток через ячейку сможет протекать при условии, что напряжение на электродах будет достаточно велико, чтобы на катоде происходил процесс восстановления ионов Cu2+ до металла – Cu, а на аноде - окисления, в данном случае ионов ОН- до О2 согласно уравнению:

4 OH- → O2 + 2 H2O + 4 e-.

Катодный потенциал при 298 К будет равен – 

εкатод = E°Cu2+/Cu + 0,059/2·lg a(Cu2+) + ηCu,

а анодный – 

εанод = E°O2/OH- + 0,059/4·lg (po2/a(OH-)4) + ηO2.

Для последнего выражения, учитывая выражение для ионного произведения воды и значения стандартного потенциала для кислорода - O2/OH-=0,402 В, получим – 

Подробнее...

Печать E-mail

Электрохимические методы анализа. 1.6. Стеклянный электрод

1.6. Стеклянный электрод

Конструкция ионоселективных электродов: а – стеклянный электродСтеклянный электрод является первым мембранным электродом, широко используемым для измерения рН растворов по настоящее время. Его достоинствами являются независимость показаний от присутствия окислителей в анализируемом растворе, отсутствие травления электродами деполяризаторами (как у водородного электрода), низкая стоимость, простота обслуживания. Стеклянный электрод (рис.) представляет собой стеклянную трубку, заканчивающуюся с одной стороны шарообразной мембраной, изготовленной из специального стекла (содержащего, например, 22% Na2O, 6% CaO и 72% SiO2), достаточно тонкого, чтобы обладать незначительной ионной электропроводностью (толщина "сухого" стекла ~10-1 мм). Внутри трубки располагается 0,1 М раствор соляной кислоты, насыщенный хлоридом серебра. Рабочим электродом выступает серебряная проволока. Внешняя и внутренняя поверхность длительно выдержанной в воде стеклянной мембраны покрыта тонким (около 10-4 мм) слоем гидратированного геля, образовавшегося в результате гидролиза стекла и вымывания ионов натрия (и других катионов) с его поверхности. Образовавшиеся пустоты в Si-O каркасе на поверхности заняты ионами H+. При движении внутрь мембраны число пустот, заполненных ионами водорода, уменьшается, а число пустот, заполненных ионами натрия, увеличивается. В объеме сухого стекла заряд переносится ионами натрия, способными перемещаться внутри пустот на расстояния, равные нескольким радиусам, и передавать энергию соседним ионам натрия. В результате описанного процесса обратимой адсорбции водородных ионов поверхностью стекла:

Подробнее...

Печать E-mail

Технология получения и применения реагента для очистки и обеззараживания воды различного назначения в полевых и стационарных условиях

Технология получения и применения реагента для очистки и обеззараживания воды различного назначения в полевых и стационарных условиях

Технология получения и применения реагента для очистки и обеззараживания воды различного назначения в полевых и стационарных условиях

Предлагается технология синтеза и применения ферратов для кондиционирования воды различного назначения, использующая успехи в химии наноматериалов, самораспространяющегося высокотемпературного синтеза, "Зеленой химии". Решение основано на свойствах специального композиционного материала, генерирующего ферраты при контакте с водой. Его просто получают на месте применения из заранее подготовленной и легко транспортируемой смеси безопасных компонентов. Реализация технологии не требует крупного финансирования и привлечения высококвалифицированного персонала.

Подробнее...

Печать E-mail

1a. Определения и общие положения окислительно-восстановительного потенциала почвы

16.1a. Определения и общие положения окислительно-восстановительного потенциала почвы

Измерение потенциала EhАнализы, описанные в данной главе, позволяют характеризовать переменные, главным образом связанные с диффузией воздуха в почве:

Eh — окислительно-восстановительный потенциал;

СДК — скорость диффузии кислорода.

Сначала дадим некоторые определения: окисление характеризуется потерей электронов, восстановление характеризуется приобретением электронов. Таким образом, в реакции окисления–восстановления окислитель восстанавливается, а восстановитель окисляется с обменом n электронами (е):

окислитель + nе ↔ восстановитель.

Измерение окислительно-восстановительного потенциала Eh позволяет количественно оценить силу и тенденцию развития системы. Его можно определять по разнице между потенциалом стандартного водородного электрода (или, что легче, каломельного электрода) и потенциалом платинового электрода, помещенного в среду (рис.). Он выражается формулой:

Подробнее...

Печать E-mail

Ещё статьи...



Рейтинг@Mail.ru

http://www.youtube.com/RuRedOx