Special Issue "Research Progress on Extraction and Characterization of Humus" - Separations (MDPI)Dear Colleagues, I am pleased to invite you to publish your new humus data in a Special Issue "Research Progress on Extraction and Characterization of Humus" - Separations (MDPI).

Humus is a stable natural product of the joint evolution of living and nonliving matter. It is formed as a result of repeated transformation of plant and animal remains in the presence of minerals under the influence of biological, climatic, and geological factors for a long time. Humus is not just a specific product of biological waste disposal, but also an important soil component. In particular, it acts as a stabilizer of the physical and chemical state of soils. Moreover, it acts as a source and regulator of the supply of nutrients to plants and soil organisms while also serving as their habitat.

More details... | Подробнее...

Nature-inspired synthesis of magnetic non-stoichiometric Fe3O4 nanoparticles by oxidative in situ method in a humic medium

Change of color of the solutions during synthesisNature-inspired synthesis of magnetic non-stoichiometric Fe3O4 nanoparticles by oxidative in situ method in a humic medium. Pankratov D.A., Anuchina M.M. //Materials Chemistry and Physics. 2019. V.231. P.216-224.

Magnetic iron oxide nanoparticles in humic substances shell - Fe3-δO4@HS were synthesized by oxidative in situ method in aqueous solutions of humic substances from metallic iron precursor. Humic substances interacting with metallic iron under natural conditions act as a complex reagent that participates in acid-base, redox, complexation reactions and adsorption processes. The Fe3-δO4@HS particles is the final product of corrosion of metallic iron in the presence of HS. Products were characterized by dynamic light scattering, scanning and transmission electron microscopy, X-ray powder diffraction, Mössbauer spectroscopy, magnetometry, infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and evolved gas analysis. It was demonstrated that the samples contained particles with sizes of 40–50 nm comprised of ∼24 nm magnetite-like crystalline cores coated by humic substances. The synthetic approach used in this article can be used as a model of corrosion processes of ferrous metals in nature. In addition, magnetite-like nanoparticulates stabilized with humic substances can be promising as bioavailable iron additives for agricultural applications.

Подробнее...

Печать E-mail

Еще статьи...

Рейтинг@Mail.ru

http://www.youtube.com/RuRedOx

Feedback | Контакт
E-mail:
Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.