Foliar Application of Humic-Stabilized Nanoferrihydrite Resulted in an Increase in the Content of Iron in Wheat Leaves

The image in the bottom row presents the total view of the droplets deposited on the surface of the wheat leaf; Images of the foliar spray droplets with ferrihydrite nanoparticles (FH) deposited on the surface of wheat leaf;  TEM image of the synthesized ferrihydrite (FH) nanoparticles and the corresponding electron diffraction image (inset); Mössbauer spectra of the ferrihydrite (FH) sample without urea treatment, models for their description, and the corresponding quadrupole splitting probability distribution functions.Foliar Application of Humic-Stabilized Nanoferrihydrite Resulted in an Increase in the Content of Iron in Wheat Leaves. Zimbovskaya M.M., Polyakov A.Y., Volkov D.S., Kulikova N.A., Lebedev V.A., Pankratov D.A., Konstantinov A.I., Parfenova A.M., Zhilkibaev O.T., Perminova I.V. //Agronomy. 2020. V.10. №12. P.1891.Search the full text below. Ищи полный текст ниже.Open access

The objective of this study was to synthesize iron (hydr)oxide nanoparticles (IONPs) stabilized by humic substances, and to estimate the feasibility of their use for foliar application on iron deficient plants. The IONPs were synthesized by rapid hydrolysis of iron(III) nitrate in a solution of potassium humate. The iron speciation and nanoparticle morphologies were characterized using X-ray diffraction, transmission electron microscopy, and Mossbauer spectroscopy. The obtained sample of IONPs was applied at concentrations of 1- and 10-mM Fe, and 0.2% urea was used as an adjuvant. Wheat plants (Triticum aestivum L. cv. L15) were used for the iron uptake test. For both of the concentrations tested, spraying the nanoparticles resulted in a 70–75% higher iron content in wheat leaves compared to ferric ammonium salt of ethylenediaminetetraacetic acid (Fe-EDTA). The synergistic effect of humic substances acting as a surfactant seemed to promote an increase in the iron uptake of the ferrihydrite nanoparticles compared to the aqueous Fe-EDTA solution used in this study. We concluded that humic-stabilized IONPs are much better suited to foliar application as compared to soil amendment when applied as a source of iron for plants. This is because humic substances act as a capping agent for nanoparticles and the surfactants enhance iron penetration into the leaf.


Печать E-mail

Еще статьи...



Feedback | Контакт
Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.