Неэмпирические расчеты гидроксосоединений платины. II. Биядерные супероксокомплексы платины(IV)

Равновесные структуры биядерных двухмостиковых супероксокомплексов платины [(OH)4Pt(μ-O2)(μ- OH)Pt(OH)4]2– (1) и [(OH)4Pt(μ-O2)(μ-OH)Pt(OH)4 • (OH)]3– (2)Неэмпирические расчеты гидроксосоединений платины. II. Биядерные супероксокомплексы платины(IV). Панкратов Д.А., Дементьев А.И., Киселев Ю.М. //Журнал неорганической химии. 2008. Т.53. №2. С.289-295.Search the full text below. Ищи полный текст ниже.

В работе проведен анализ структурных и спектральных данных, полученных неэмпирическими методами для кластеров состава [(OH)4Pt(μ-O2)(μ-OH)Pt(OH)4]2-, [(OH)4Pt(μ-O2)(μ-OH)Pt(OH)4(OH)]3-, [(OH)5Pt(μ-O2)Pt(OH)5]3- и [(H2O)(OH)4Pt(μ-O2)Pt(OH)4•(H2O)]-, соответствующих биядерным одно- и двухмостиковым супероксокомплексам платины (IV). Полученные данные находятся в согласии с экспериментальными данными и позволяют сделать вывод о строении реально существующих комплексов.

Подробнее...

Печать E-mail

Электрохимические методы анализа. 2.1a. Протекание тока через электрохимическую ячейку

 

2.1. Протекание тока через электрохимическую ячейку (часть 1)

Схема электрохимической ячейки

Рассмотрим электрохимическую ячейку (рис.) в виде сосуда с раствором электролита (водный раствор соли металла), в которую погружены два электрода из одного и того же металла (соответствующего катионам электролита). Электроды подключены к внешнему источнику постоянного напряжения. В этом случае на поверхностях обоих электродов будут протекать соответствующие электрохимические реакции: на отрицательно заряженном электроде (катод) будет происходить восстановление (присоединение электронов) катионов электролита – 

Мn+·aq + ne- = М(пов),

а на положительно заряженном электроде (анод) – окисление (отдача электронов) атомов электрода – 

М(пов) = Мn+·aq + ne-.

При этом число электронов, отдаваемых на катоде, равно числу электронов, принимаемых на аноде. 

В общем случае, катодный процесс сопровождается переносом вещества из раствора электролита на поверхность электрода, а анодный процесс – переносом вещества с поверхности электрода в раствор электролита в виде соответствующих катионов, т.е. растворением анода. Количество же превратившегося вещества пропорционально количеству электричества (тока), проходящего через ячейку, в соответствии с законами Фарадея.

Подробнее...

Печать E-mail

Электрохимические методы анализа. 2. Неравновесные электрохимические методы

2. Неравновесные электрохимические методы

В отличие от потенциометрии, другие электрохимические методы анализа предполагают протекание через электрохимическую ячейку электрического тока конечной величины. Это выводит электрохимическую систему из равновесного состояния, что в свою очередь, вынуждает учитывать процессы массопереноса вещества в приэлектродном пространстве. 

 


Авторская редакция главы из книги Н.Г. Ярышев, Д.А. Панкратов, М.И. Токарев, Н.Н. Камкин, С.Н. Родякина. Физические методы исследования и их практическое применение в химическом анализе: Учебное пособие. ISBN: 978-5-4263-0122-1. М.:Прометей, 2012, 160 стр.

Учебное пособие адресовано студентам, аспирантам и др. специалистам химических и биологических факультетов педагогических вузов. Содержание пособия соответствует Государственному образовательному стандарту высшего профессионального образования и учебно-методическим комплексам по дисциплинам: современные физико-химические методы исследования неорганических и органических веществ и химия окружающей среды. Пособие содержит введение, 6 глав и приложение, в котором приведены методики анализа, применяемые в настоящее время в аналитической химии, в том числе в лабораториях экологического мониторинга, испытательных лабораториях и в центрах государственного санитарно-эпидемиологического контроля.

Печать E-mail

Электрохимические методы анализа. 2.1c. Протекание тока через электрохимическую ячейку

 

2.1. Протекание тока через электрохимическую ячейку (часть 3)

Вольтамперные кривые для неравновесных процессов

Рассмотрим, как изменится поляризационная кривая при электролизе водного раствора CuSO4 в ячейке с платиновыми электродами. Ток через ячейку сможет протекать при условии, что напряжение на электродах будет достаточно велико, чтобы на катоде происходил процесс восстановления ионов Cu2+ до металла – Cu, а на аноде - окисления, в данном случае ионов ОН- до О2 согласно уравнению:

4 OH- → O2 + 2 H2O + 4 e-.

Катодный потенциал при 298 К будет равен – 

εкатод = E°Cu2+/Cu + 0,059/2·lg a(Cu2+) + ηCu,

а анодный – 

εанод = E°O2/OH- + 0,059/4·lg (po2/a(OH-)4) + ηO2.

Для последнего выражения, учитывая выражение для ионного произведения воды и значения стандартного потенциала для кислорода - O2/OH-=0,402 В, получим – 

Подробнее...

Печать E-mail

Еще статьи...

Яндекс.Метрика

Top.Mail.Ru
Top.Mail.Ru

http://www.youtube.com/RuRedOx

Feedback | Контакт
E-mail:
Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.